A team of researchers at the University of Copenhagen has discovered a new piece in the puzzle of the brain’s ‘feel good’ substance, dopamine. According to one of the researchers behind the new study, the discovery may facilitate the development of drugs for i.e. cocaine addiction and ADHD and is most likely to change the general notion of how dopamine is removed from the brain.
“The textbooks probably have to be rewritten now.”
Professor Claus Juul Løland from the Department of Neuroscience at the University of Copenhagen feels quite certain.
A team of researchers headed by Claus Juul Løland has just published a study in the esteemed journal Nature Communications. The study sheds new light on the mechanism transporting dopamine to the nerve cells.
“The mechanism we have been researching is the so-called dopamine transporter (DAT). DAT controls dopamine signalling in the brain by removing the released dopamine and thus turning off the signal. DAT can be described as a molecular vacuum cleaner. Dopamine is key to our ability to control the communication between nerves in the part of the brain known as the reward centre. For example, it is dopamine that makes us feel happy when we do something we enjoy.”
“This new insight into how DAT works may enable us to design better drugs for e.g. ADHD and schizophrenia, which are conditions related to the level of dopamine in the brain.”
“ADHD drugs are a type of amphetamine that targets and blocks DAT. This means that not all dopamine returns to the cell for reuse, and we may have difficulty feeling rewarded. It is even worse with a substance such as cocaine which completely blocks DAT, preventing all dopamine from returning to the cell. This means that the nerve cells will continue to want more cocaine until there is no more dopamine left and you start to feel depressed,” Claus Juul Løland explains.
Hunting for a new substance
The new study gives researchers and pharmaceutical companies detailed knowledge of how DAT works and how we can regulate the activity of the protein instead of blocking it.
It is difficult, though, if not impossible, to study the molecular functions of DAT in their natural environment in the brain. Instead, the researchers have inserted DAT into ‘artificial’ cells, which enables them to control all processes both inside and outside the cell.
“This has enabled us to isolate the workings of DAT from the ‘disturbance’ of all other biological processes,” Claus Juul Løland explains.
He and his colleagues hope their results will be picked up and tested.
The team is now trying to find a substance capable of influencing DAT activity without shutting it down completely.
Publication: Solveig G. Schmidt, et al., The dopamine transporter antiports potassium to increase the uptake of dopamine, Nature Communications (2023). DOI:10.1073/pnas.2112225119
Original Story Source: University of Copenhagen